Cycle Kronecker products that are representable as optimal circulants

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representable Lexicographic Products

A linear ordering is said to be representable if it can be order-embedded into the reals. Representable linear orderings have been characterized as those which are separable in the order topology and have at most countably many jumps. We use this characterization to study the representability of a lexicographic product of linear orderings. First we count the jumps in a lexicographic product in ...

متن کامل

Kronecker Products and BIBDs

Recursive constructions are given which permit, under conditions described in the paper, a (v, b, r, k, lambda)configuration to be used to obtain a (v', b', r', k, lambda)-configuration. Although there are many equivalent definitions we will mean by a (v, b, r, k, lambda)-configuration or BIBD that (0, 1)-matrix A of size v x b with row sum r and column sum k satisfying AAT = (r lambda)I + lamb...

متن کامل

Unimodality via Kronecker Products

We present new proofs and generalizations of unimodality of the q-binomial coefficients ( n k ) q as polynomials in q. We use an algebraic approach by interpreting the differences between numbers of certain partitions as Kronecker coefficients of representations of Sn. Other applications of this approach include strict unimodality of the diagonal q-binomial coefficients and unimodality of certa...

متن کامل

Automorphisms of circulants that respect partitions

In this paper, we begin by partitioning the edge (or arc) set of a circulant (di)graph according to which generator in the connection set leads to each edge. We then further refine the partition by subdividing any part that corresponds to an element of order less than n, according to which of the cycles generated by that element the edge is in. It is known that if the (di)graph is connected and...

متن کامل

On Homology Classes Not Representable by Products

We show that Preissmann’s theorem implies that no closed negatively curved manifold is dominated by a non-trivial product. We also show that a fiber bundle whose base and fiber are negatively curved is dominated by a product if and only if it has a finite covering space which is a trivial bundle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2015

ISSN: 0166-218X

DOI: 10.1016/j.dam.2014.08.027